324451 (25)

BE (4 ${ }^{\text {th }}$ Semester) Examination, Nov.-Dec., 2021

Branch : Elect.

ANALOG ELECTRONICS (NEW)

Time Allowed : Three Hours Maximum Marks : 80

Minimum Pass Marks : 28

Note: (i) Part (a) of each question is compulsory.
(ii) Attempt any two parts from (b), (c) and (d).

Unit-I

Q. 1. (a) Define stabilization factors $S, S^{\prime \prime}$ and $S^{\prime} ? 2$
(b) What is Bias Compensation? Explain the

$$
\text { various compensation techniques ? } 7
$$

(2)
(c) For circuit shown below, calculate $I_{D}, V_{G S}$, $\mathrm{V}_{\mathrm{G}}, \mathrm{V}_{\mathrm{DS}}$ and V_{S} ?

(d) Calculate $R_{e}, V_{c e}$ and S for circuit shown
below :

324451 (25)

Unit-II

Q. 2. (a) State Miller's theorem ?
(b) Explain Bootstrapping in Darlington pair amplifier ? 7
(c) The cascade configuration is shown in figure. Find input resistance if hie $=$ hre $=$ hoe
$=0$ and hfe is same for each transistor from

$$
\begin{equation*}
Q_{1} \text { to } Q_{n} \text { ? } \tag{7}
\end{equation*}
$$

(d) The FET used in Bootstrapped CD amplifier
shown in figure has :
$\mathrm{gm}=2 \mathrm{mAN}, \mathrm{rd}=20 \mathrm{~K}$. Assume that all the
capacitors have large value and gate current
of FET is negligible calculate :
(i) Voltage gain $\mathrm{Av}=\mathrm{V}_{0} / \mathrm{V}_{\mathrm{i}}$
(ii) R_{i} ?

(5)

Unit-III

Q. 3. (a) Define base spreading resistance \& write its expression? 2
(b) Define Diffusion Capacitance ? Also, derive an expression for it ? 7
(c) A BJT has following parameters measured at room temperature $I_{C}=1 \mathrm{~mA}$, hie $=3 \mathrm{k} \Omega$, hie $=100, f_{T}=4 \mathrm{MHz}, C_{C}=2 \mathrm{pf}, \mathrm{C}_{\mathrm{e}}=18 \mathrm{pf}$.

Find $r b ' e, r b b ', g m$ and f_{H} for $R_{L}=1 \mathrm{k} \Omega$?
(d) Prove that for an CE amplifier

Also define f_{T} and f_{β} ?

(6)

Unit-IV

Q. 4. (a) Define harmonic distortion in an amplifier ? 2
(b) Describe low frequency response of an amplifier and also find expression for percentage tilt?
(c) The transfer function $\mathrm{V}_{0} / \mathrm{V}_{\mathrm{s}}$ of an amplifier has n poles $S_{1}, S_{2} \ldots . . S_{n}$ and k zero's $S_{z 1}$, $\mathrm{S}_{\mathrm{z} 2} \ldots \ldots \mathrm{~S}_{\mathrm{zk}}$ is as follows :

$$
T . F=\frac{V_{0}}{V_{s}}=\frac{K\left(S-S_{z 1}\right)\left(S-S_{z 2}\right) \ldots \ldots .\left(S-S_{z k}\right)}{\left(S-S_{1}\right)\left(S-S_{2}\right) \ldots \ldots .\left(S-S_{n}\right)}
$$

If zeros are of much higher frequency then
poles then show that : approximate

expression for high $3 d B$ frequency $f_{H^{*}}$ is

given as :

$$
\frac{1}{f_{H^{*}}}=\sqrt{\frac{1}{f_{1}}+\frac{1}{f_{2}} \ldots \cdots \cdots \cdot \frac{1}{f_{n^{2}}}}
$$

(d) Explain types of distortions in an amplifier? 7

Unit-V

Q. 5. (a) Define feedback ? 2
(b) What are the different topologies for feedback amplifiers ? 7
(c) What are advantages of negative feedback \&
what are general characteristics of negative feedback?
(d) Derive following for voltage shunt feedback
amplifier :
(i) $R_{i} f$
(ii) $R_{o} f$

